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Abstract- Crack detection in structural elements is pivotal for structural health 

monitoring. In this paper, an automatic machine vision-based crack detection method is 

proposed, which is efficient, computationally simple, and fast in contrast to the time-

consuming and highly subjective traditional visual inspection approach. Textural analysis 

of the concrete surface image is performed using Haralick features for crack detection. 

First, a combination of 8 suitable Haralick features in 4 different directions are extracted 

from the SDNET2018 image dataset. Then, different SVM classifiers are trained on the 

extracted features and tested using a 5-fold cross-validation scheme to distinguish 

between cracked and non-cracked images. The resulting best-trained classifier achieves 

an overall classification accuracy of 88%. Furthermore, the high classification accuracy 

for individual image categories indicates that the proposed method can effectively detect 

cracks in the images. Finally, crack orientation is localized based on the extracted feature 

values. 
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1 INTRODUCTION 

Concrete cracks are generally unavoidable and very common due to expansion, shrinkage, overloading, settlement, or 

premature drying, which are common causes of cracks in the concrete surface. While concrete cracks are not always 

associated with high risk, they are nevertheless the first indicators of compromised structural durability and health. 

Therefore, the detection and assessment of crack properties, such as width, orientation, and its precise location in the 

structure, is crucial for structural health monitoring (SHM). Visual inspection by a trained inspector is the conventional 

method for crack detection which is highly subjective of the person’s experience and knowledge. More importantly, visual 

inspection is a particularly time-consuming and labor-intensive approach. Therefore, several reliable and cost-effective 

machine vision (MV) based automatic crack detection and assessment techniques have been proposed in the literature as 

a substitute for the traditional human visual inspection approach for SHM [1].  

MV-based SHM techniques mostly rely on the camera image for concrete crack detection. As the crack in a 2D image is 

characterized by an edge, these methods generally employ edge detection and segmentation algorithms for the detection 

of cracks in the concrete surface image. In [2], probabilistic relaxation with adaptive thresholding is proposed for crack 

detection. A pavement crack detection method: CrackTree [3], detected cracks from the crack probability map constructed 

through the tensor voting scheme after the correction of illumination using the geodesic shadow removal technique. A 

phase symmetry-based enhancement filter coupled with morphological operations and thresholding is proposed in [4] for 

concrete crack detection. In [5], cracks are detected by using the Sobel edge detector and OTSU thresholding scheme. This 

method was further extended in [6], where the connected component analysis was performed in HSV colorspace to detect 

cracks. In [7], the Sobel edge detector, morphological operations, and particle filter are employed for crack detection. A 

bottom-hat morphological operation is used in [8] for the detection of crack and surface degradation. A machine learning 

(ML) centered method is proposed in [9] where a classifier trained on the histogram of oriented gradient features is used 

for crack detection. A similar approach is presented in [10], where a trained classifier on speeded-up robust descriptors is 
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utilized for the classification of images into cracked and non-cracked images. In [11], crack detection using small drones 

is proposed by using a deep learning (DL) neural network approach. AlexNet convolutional neural network (CNN) is 

trained using a transfer learning approach to classify acquired camera images from the drone into cracked and non-cracked 

images. A method in [12] is also based on the AlexNet CNN, where an exhaustive search with a sliding window is utilized 

to detect cracks using a smartphone application. In [13], a semantic segmentation is performed to accurately detect crack 

pixels using a visual geometry group network (VCGNet) based CNN.  

The existing MV-based crack detection techniques are generally conditional variant due to pixel-based detection of cracks. 

Therefore, their performance is seriously compromised due to different light conditions, blemishes and concrete spalls. On 

the other hand, accuracy of DL-based crack detection methods is largely dependent on the quality and quantity of the 

utilized training dataset. In the present paper, a MV-based method for the automatic detection of cracks from the camera 

images is presented, which relies on the concrete surface texture analysis as a suitable measure for crack detection. For 

ameliorating this, Haralick features are initially extracted from the diverse database of the cracked and non-cracked 

concrete surface images. Then, the ML-based classifiers are trained and tested on the extracted features for crack detection. 

The trained classifier on the extracted features achieves high classification accuracy for crack detection. In contrast to 

existing techniques, the proposed method is based on the global robust features, and therefore, the performance of the 

proposed method is invariant to image translation, rotation, scale, and illumination. 

The remainder of the paper is organized into four sections. In Section 2, the materials and methods utilized in the proposed 

technique are presented. The proposed methodology is detailed in Section 3. Results are discussed in Section 4, and the 

conclusions and future work is presented in Section 5.  

2 MATERIALS AND METHODS 

2.1  Materials 

The required material for this study is the concrete images of different civil structures annotated as cracked or non-cracked. 

For this purpose, SDNET 2018 is utilized, which is a publicly available comprehensive dataset of more than 56,000 camera 

images of concrete walls, pavements, and bridges [14]. The images in the dataset (as detailed in Table 1) are labeled and 

categorized into two image classes: cracked and non-cracked. SDNET2018 is a challenging and diverse dataset as it 

includes images with different illumination conditions and obstructions. Further, it includes images of different crack 

widths ranging from 0.06 mm to 25 mm. Figure 1 shows some of the SDNET2018 images of different conditions and 

cracks widths. For our method, we have pre-selected images (as detailed in Table 1) for each class (cracked and non-

cracked) from each category. The selection was primarily done to balance the classes and more importantly, to remove 

images having barely visible cracks or cracks within tolerable crack width as per guidelines of American concrete institute 

(ACI) [15]. 

 
(a) (b) (c) (d) (e) 

Figure 1: SDNET2018 image dataset: Non-cracked (a) and cracked (b-e) sample images with different crack widths and 

lighting conditions of walls (top row), pavements (middle row), and bridge decks (bottom row). 
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Table 1- Details of original SDNET2018 and Utilized image dataset.  

Category 

 SDNET2018  Utilized dataset (Selected Images) 

 Cracked 

images 

Non-cracked 

images 

Total  Cracked 

images 

Non-cracked 

images 

Total 

Bridge deck  2025 11,595 13,620  960 960 1920 

Pavement  2608 21,726 24,334  964 964 1928 

Wall  3851 14,287 18,138  960 960 1920 

Total 
 

8484 47,608 56,092 
 

2884 2884 5768 

 

2.2 Haralick Features 

Haralick features are extracted from the gray-level co-occurrence matrix (GLCM) [16]. GLCM matrix is the statistical 

method of examining texture based on the spatial relationship of the pixels. The normalized and symmetric GLCM matrix 

is computed by calculating how often a pixel with a grayscale value i occurs with a specific pixel offset and direction to a 

pixel with the grayscale value j. For our proposed method, we have selected 8 Haralick features out of 14. The selected 

features are: Contrast, Angular second moment (ASM), Energy, Dissimilarity, Homogeneity, Entropy, Correlation, and 

Variance, which were the most suitable ones for the texture analysis of the concrete crack surface. The mathematical 

expressions for these features are presented in Table 2, where 𝐼(𝑖, 𝑗) is the GLCM matrix of size 𝑁  𝑀 with 𝑖 and 𝑗 index 

values, 𝜇 is the mean value and 𝜎𝑥 and 𝜎𝑦 are the standard deviation in the 𝑥 and 𝑦 directions, respectively. 

 

Table 2- Selected Haralick features.  

Feature Expression Feature value in presence of Crack 

Contrast ∑(𝑖 − 𝑗)2 ∗ 𝐼(𝑖, 𝑗)

𝑁−1

𝑖,𝑗

 Higher value 

ASM ∑[𝐼(𝑖, 𝑗)]2

𝑁−1

𝑖,𝑗

 Lower value 

Energy √𝐴𝑆𝑀 Lower value 

Dissimilarity ∑|𝑖 − 𝑗| ∗ 𝐼(𝑖, 𝑗)

𝑁−1

𝑖,𝑗

 Higher value 

Homogeneity ∑
𝐼(𝑖, 𝑗)

1 + |𝑖 − 𝑗|
𝑖,𝑗

 Lower value 

Correlation ∑
(𝑖, 𝑗) ∗ 𝐼(𝑖, 𝑗) − 𝜇𝑥 ∗ 𝜇𝑦

𝜎𝑥 ∗ 𝜎𝑦

𝑁−1

𝑖,𝑗

 Lower value 

Entropy − ∑ 𝐼(𝑖, 𝑗) ∗ log 𝐼(𝑖, 𝑗)𝑁−1
𝑖,𝑗   Higher value 

Variance ∑ (𝑖 − 𝜇)2 ∗ 𝐼(𝑖, 𝑗)
𝑁−1

𝑖,𝑗
 Higher value 
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3 PROPOSED METHODOLOGY  

The block diagram of the proposed MV-based crack detection method from the concrete surface images is depicted in 

Figure 2 with the details presented below. The processes involved in the proposed methodology were implemented and 

executed using MATLAB and Python computer programming languages.  

 

 

Figure 2: Block diagram of the proposed method. 

3.1 Pre-processing 

The color concrete surface image is first converted to grayscale format using a linear transformation. Then, the image is 

quantized to 12 grey levels which were found enough for retaining the cracks with sufficient detail. The resulting quantized 

grayscale image was an accurate approximation of the original 256 grey level image. The quantization was done to 

facilitate the computation of GLCM as it is computationally very expensive to calculate GLCM for all 256 grey levels. 

After the quantization, GLCM is computed with a pixel offset of 1 for four angles (0˚, 90˚, 45˚ and 135˚), corresponding 

to four directions: the horizontal, the vertical, and the two diagonals, respectively. 

3.2 Haralick Feature Extraction 

Selected Haralick features (as detailed in Section 2.2) are extracted from the GLCM. Out of the 8 features, 6 features 

(except Entropy and Variance) will have 4 values from 4 different directions. Therefore, the resulting feature vector length 

is 26. Further, the main orientation of the crack can be observed by analyzing the feature values in four different directions 

as there is a distinct discrepancy present among GLCMs generated at different angles. Cracks are generally oriented along 

with local minima or maxima of that individual feature, depending on the behavior of feature in the presence of the crack. 

3.3 Classifier 

A support vector machine (SVM) is used as a classifier for training and testing the proposed method. SVM is a global 

classifier suitable for fitting multi-class data distribution. Based on the kernel, it can perform both linear and non-linear 

fitting for classification. For linear classification, a suitable hyper plane divides each cluster equally by the support vectors. 

While in non-linear classification, it transforms the initial distribution to a higher dimension where they are separable. The 

tested kernels included radial basis function (RBF), Histogram intersection (HI) and linear. For training and testing the 

SVM kernels, 𝑘-folds cross-validation scheme was utilized. The data were randomly partitioned into 𝑘 equal sets and then 

the classifier is trained on 𝑘 − 1 sets with remaining 1 set left out for testing. The process is repeated for each set and the 

final accuracy is collectively calculated for the complete set. The value of 𝑘 was 5 in our method. 

4 RESULTS AND DISCUSSION 

To quantify the performance of the trained classifier for crack detection, Accuracy (Acc.), Recall (R), Precision (P) and 

F1-score (F1) are computed. Table 3 presents the utilized performance metrics where TP is True Positive: a cracked image 

correctly classified as a cracked image, TN is True Negative: a non-cracked image correctly classified as a non-cracked 

image, FP is False Positive: a non-cracked image incorrectly classified as a cracked image, and FN is False Negative: a 

cracked image incorrectly classified as a non-cracked image. 
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Table 3- Performance metrics. 

Metrics Mathematical Expressions 

Accuracy (%) 𝐴𝑐𝑐. =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
  100 

Recall (%) 𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  100 

Precision (%) 𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  100 

F1-score (%) 𝐹1 =
2  𝑃  𝑅

𝑃 + 𝑅
  100 

 

Table 4 presents the 5-fold cross-validation results in terms of Acc., R, P, and F1 of the tested classifiers for individual 

categories and all categories combined. It can be observed that the HI-based SVM classifier has the maximum performance 

metric values for individual categories. The proposed method can distinguish between cracked and non-cracked images 

with an accuracy of 88% for bridge deck surface images, 94% for pavement surface images and 89% for wall surface 

images. Further, when all categories are combined, the proposed method has a classification accuracy of 88% and the best-

trained model is a Linear-based SVM classifier. 

Table 4- Performance evaluation of the proposed method. 5-fold cross-validation results of SVM kernel-

based classifiers trained on each image category and all images combined. 

Category Bridge deck  Pavement  Wall  All  

SVM kernel RBF HI Lin  RBF HI Lin  RBF HI Lin  RBF HI Lin 

M
et

ri
cs

 

Acc. (%) 74 88 88  88 94 92  66 89 88  64 57 88 

R (%) 66 85 84  84 93 91  74 89 87  74 59 86 

P (%) 77 91 91  91 95 93  57 89 88  59 55 90 

F1 (%) 70 88 87  87 94 92  64 89 88  65 56 88 

 

After the crack detection by a trained classifier, the extracted Haralick feature values in four directions are assessed to 

localize the main orientation of the crack in the image. While all extracted Haralick features show a distinctly different 

value along the direction of the crack orientation in comparison to the other directions, we have found the contrast as the 

most suitable feature for the localizing the main direction of the detected crack in an image. Therefore, the crack’s main 

orientation is ascertained by finding the maximum value of the contrast feature. To elaborate on this, Figure 3 shows two 

sample images with 135˚ and 45˚ crack orientations. The corresponding four contrast feature values calculated from 

GLCMs for these two images are tabulated in Table 5. As GLCMs have distinct discrepancies among themselves in the 

presence of a crack, this is reflected in the computed feature values. Figure 3(a) has the maximum contrast feature value 

of 2.36215 for GLCM computed at an angle of 135˚. Therefore, the main orientation of the detected crack in the image is 

the diagonal direction of 135˚. Similarly, the maximum contrast value for Figure 3(b) is 3.80787 for computed GLCM at 

45˚angle, which is indeed the main direction of the crack orientation in the image. 
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(a) (b) 

Figure 3: (a) Cracked image with 135˚ crack orientation (b) Cracked image with 45˚ crack orientation. 

  

Table 5- Haralick Contrast feature values for sample images 

in Figure 3. 

Contrast Values 

GLCM Angles  

0˚ 45˚ 90˚ 135˚ 

Figure 3 (a) 1.49887 1.74825 0.87333 2.36215 

Figure 3 (b) 2.67880 3.80787 1.10470 2.80471 

 

Finally, the performance comparison of our proposed method is made with a recent study in [17], where six different MV-

based algorithms are benchmarked for crack detection in concrete surfaces. Among the tested algorithms, the crack 

detection in spatial domain using Laplacian of Gaussian (LoG) filter proved to be the best performing technique for 

concrete crack detection. While the rest of the evaluated algorithms had a classification accuracy of below 85% [17], the 

LoG-based algorithm yielded a similar performance with 92% accuracy with 88% precision, which is comparable with our 

proposed method. However, the performance of the algorithm is reported on an image dataset size of 100 images of 

concrete panels only.    

5 CONCLUSION 

The following conclusions can be drawn from the conducted study: 

• An automatic crack detection from concrete surface images of different civil structures can be made using 

advanced machine vision techniques.  

• Crack detection can be done through textural analysis of the concrete surface image using a combination of 

appropriate Haralick features. 

• Crack orientation can be determined by assessing the extracted features in different directions. 

The proposed method shows a good classification accuracy for cracked and non-cracked images which motivates us to 

explore other Haralick features in future works. The proposed method can be integrated with unmanned aerial vehicles 

(drones) for autonomous concrete crack detection. Also, more robust pre-processing steps can be examined to enhance the 

region of interest to improve the crack detection and thereby, further improve the classification accuracy. 
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