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Abstract- In this paper, a phase field-based numerical model has been presented to study 

fracture in concrete. All nonlinearities in the fracture process zone are modeled using 

cohesive zone approach with traction-separation constitutive law for concrete. A localized 

band of finite width is used to regularize the crack path using scalar phase-field. The 

phase-field discriminate between intact and broken surface using numeric values of 1 and 

0. The critical fracture energy is modeled as the algebraic sum of the critical fracture 

energy of mode I and mode II. A finite element method is used to implement the proposed 

model. Numerical simulation for mode I fracture is performed on a three-point notched 

concrete beam. The concrete response under applied loading is represented using load-

displacement curve. A study related to effect of mesh size and length scale parameter on 

the output results is carried out. The results indicated that the length scale parameter and 

finite element size has little effect on the model.  It is concluded that the phase-field model 

has the ability to simulate crack growth in concrete under the given loading condition. 

 

Keywords- Mode I fracture, Mixed mode fracture, Phase-field, Fracture energy, Length scale parameter.  

1 Introduction 

Concrete is composite material and is widely used in construction industry as a building material.  When subjected to 

normal and shear stresses, the crack tends to propagates along an inclined path, indicating the mixed mode fracture in 

concrete. The mixed mode fracture in concrete is one which occurs as result of the combination of mode I (tensile failure) 

and mode II (shear failure). Various experimental tests have shown that concrete generally fails in mixed mode (I-II) when 

subjected to environmental loading [1]. Understanding the fracture phenomena in concrete is vital for the accurate analysis 

and design of concrete structure. This is because the cracking reduces the stiffness of concrete, thereby effecting its 

serviceability, durability and may lead to complete failure. A numerical model generally needs two ingredients to model 

crack growth problem in concrete: the first one is the crack initiation criterion and the second one is the damage criterion. 

The crack initiation criterion is generally based on maximum principle tensile stress or strain. Other crack initiation 

criterion can also be used. The damage criterion has to be based on mode I and mode II fracture energies if one wants to 

study the crack growth under mixed mode condition. Developing these criteria for mixed mode fracture is challenging [2]. 

Although, most of the numerical model, which are proposed earlier [3], [4], can simulate the crack initiation and crack 

propagation, they are unable to simulate some aspects of crack related to fracture process, for example crack kinking, 

coalescence, branching and nucleation. The phase field model presented in this paper has the ability to predict the crack 

initiation, propagation, nucleation, branching and kinking during crack growth. 

 

The macro model behaviors of concrete structure can be determined from the meso or micro model if mechanical properties 

of the two matches [5]. In addition, performing experiments on macro structures is time consuming and uneconomical. For 

this reason, meso and micro scale model of the actual physical structures are generally used for simulation. To achieve 
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better results, greater degree of mechanical, geometrical and compositional similarity between the 

prototypes and actual system is required [6]. 

 

Two approaches are generally used to model the fracture in concrete: discontinuous and continuous approach. The 

discontinuous approach is largely based on the work presented in [7], [8] and Cohesive Zone Model (CZM) [9], [10]. In 

this approach the crack is modeled as a strong discontinuity embedded in the finite element mesh. In contrast, the 

continuous approach models the crack by distributing the damage in a band of finite width using a scalar phase field. 

 

The Cohesive Zoned Model and Extended Finite Element Method (XFEM) are the two prominent methods which are 

based on the discontinuous approach. In CZM, the cohesive elements are distributed along the boundary of the element in 

finite element mesh. A mechanical behavior of cohesive element is controlled by traction separation law, that also account 

for all nonlinearities at the crack tip. Many researchers [11]–[13] have used this approach to simulate the fracture 

phenomena in concrete and other material. This approach requires the crack path to be known in advance. In addition, this 

method is mesh sensitive [14]. The complicated stress distribution in the fracture process zone cannot be accounted for in 

this method [15]. This method requires advance software and packages for implementation. As opposed to CZM, the 

XFEM is free from mesh sensitivity problems and can easily handle the displacement discontinuity due to sharp crack 

[16]. This method is based on partition of unity [17]. The discontinuity is included in the finite element mesh by enriching 

specific node using special function without altering the original mesh. XFEM has the ability to simulate complex 

phenomena and more powerful as compare to CZM. Numerous researcher have used this method for simulating and 

numerical modeling of complex problems like fracture in concrete, see for example [18]–[22]. Although, XFEM is a 

powerful numerical method, it too like CZM suffer in cases of complex crack topologies including crack branching, 

intersecting and kinking. It is also not suitable to simulate problem involving friction action and high degree of material 

nonlinearities.  

 

The continuous approach, as opposed to discontinuous approach, does not model the crack as a strong discontinuity rather 

smears it in a localized band. The phase field model (PFM) falls in this category. In this model, the damage is distributed 

in a localized band and a scalar phase field ϕ is used to indicate the degree of damage in the material. The width of the 

damage is controlled by a length scale parameter lc. The phase field take value of 0 and 1 for completely intact and damage 

state of the material. The PFM gives the displacement and phase field as output of the model by solving multivariable 

problem. It do so by fusing the Griffith criterion and phase field in the total potential of the system and extremizing it using 

the variational principle [23]. The phase field, surface density and damage equation used in the PFM can vary and thus 

results in different phase field models. Feng and Wu [24] used a phase field model to investigate the boundary and size 

effect on fracture in concrete. The cohesive zone model approach was used to model the strain softening behavior of 

concrete. In [25], the phase field model was used to study fracture in cement-based material. A modified constitutive law 

inclusive of the early-age processes including shrinkage, thermal expansion and creep was used to simulate fracture. In 

addition, ,many other researcher [26]–[30] have used phase field model to simulate the fracture process in solids.  

 

In this paper, phase field model proposed in [30] has been used to simulate mode I fracture in simply supported notched 

concrete beam. The load is applied at mid-point of the beam to ensure that the crack grow in mode I. The aim of the study 

is to investigate the suitability of phase field model in simulating fracture in concrete. In addition, the effect of length scale 

parameter on the crack growth has been undertaken. The concrete mass is assumed to be homogenous in composition. All 

nonlinearities are included in the model using an exponential traction-separation law. No viscous parameter is included in 

the model. The simulations are performed using the elastic mechanical properties of the material. The crack and damage 

visualization in the model during simulating is assisted by the scalar phase field discriminating between intact and damage 

state of the material using numerical value of 0 and 1. 

2 Phase Field Model 

In this section, the formulation of phase field model based on the variation approach has been presented. For a solid body 

with domain , the external potential energy can be written as: 
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  . .P b dV t dA
 

  u u u   (1) 

    

Here b  is the body force, t  is the traction applied on t  and u is the displacement applied at the boundary. 

For a crack set  in the solid domain   ,the expression for the surface energy is given by: 

         cG dA


      (2) 

   

The 
cG is the critical energy release rate of the material. it can be obtained from tensile test on the material. 

The internal strain energy stored in the solid body can be represented as following: 

   2 2

0

1

2
u tr tr           (3) 

Where  and   are the lame constant and   is the strain tensor. 

After having equations for the external potential energy, surface energy and strain energy density function, the total 

potential energy of system, ignoring the body forces, can be written as: 

                                                 , .cdV G dA t dA 
  

      u u u   (4) 

The numerical implementation of the equation (4) is a challenge because of the discontinuous displacement field and 

unknow nature of the crack set. These limitation are addressed by regularizing the total potential of the system using  

variation approach presented in [26], [27], [31]. The regularized total potential is given by: 

       , ,s c P      u u u   (5) 

Where  

      0,s g dV  


  u uò          (6) 

 

   ;c cG dA  


      (7) 

 

Here  ,s  u ,  c   is the regularized strain energy density functional and regularized surface energy functional. 

 ;    is the crack surface density functional characterizing the growth of phase field in the solid domain.  P u is 

the external potential energy due to body forces and traction. 

The crack surface density,  ;    function is given by, [26], [32]: 

   2

0

0

1 1
;

2
l

l
     

 
     

 
 (8) 

After putting Equation (6), (7) and (8) in Equation (5), the total potential can be rewritten as, [30] : 

                2

0 0

0

1 1
, . .

2
cg dV G l dV b udV t udA

l
     

   

 
        

 
   u uò  (9) 

In equation (9)   0 uò  is the elastic free energy functional and  g  is the damage function. The damage function is 

bound to the following conditions, [26]: 

     
.

0, 1 00 1 1g g and g    (10) 
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After expressing the total potential of the solid body in term of phase field model, the problem 

comes down to finding the variation of Equation (9) w.r.t phase field   and displacement u given by: 

   , : . . .
t

cdV dV G dV b dV t dA
  

        
      

   
        

   
    u u uò  (11) 

It yields the following equations and boundary conditions, [30]: 

0b in      (12) 

tn t on       (13) 

0 0cY G on       (14) 

0 0cY G on       (15) 

Where 

:Y





 


 

:

 


 

  
    

  
  (16) 

. 0Bn on B





 


  (17) 

Equation (12) is called the equilibrium equation while Equation (14) and (15) are the phase field evolution equation. In 

addition, equation (13) and (17) are the boundary condition. 

In order to simulate the mixed mode fracture and avoid the crack growth under compression, the initial strain energy is 

decomposed into tensile, shear and compression part as following, [30]: 

   0 1 0 0 0I II IIg g           (18) 

0 0 0 0I II          (19) 

The mixed mode phase field evolution equation becomes: 

   
 2 2

00 0

0 0

 
2 '

' 'I II
I II

cI cII

l
g g

G G c l

   
 

   
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Where '
I

g  and '
II

g are the degradation function for mode I and mode II. Similarly, 
cI

G and 
cII

G are the fracture 

energies for the two modes. 

The weak form of the governing differential equation is given by: 
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Where 
^

u  and 
^

  are the known displacement and phase field values at nodes. 
^

D is the modified constitutive matrix. 
u



and 
  are shape functions for displacement and phase field. The 

I
b and 

II
b are constants that can affect fracture 

angles during crack growth. The phase field evolution equation and equilibrium equation are solved for displacement 
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and phase field and the crack path is obtain as part of the solution. The propose scheme is 

implemented in a finite element code using C++ Jem and Jive libraries 

3 Methodology 

The methodology used for simulating fracture in concrete using the proposed phase field model is discussed in the 

following sections. 

3.1 Specimen Selection 

The concrete beam specimen used in  [33] has been selected for numerical simulation of mode I fracture in concrete using 

the proposed phase field model. The dimensions of the beam are: length, L = 36 in, Depth, D = 9 in and thickness, t = 

3.375 in. However, to reduce the computational cost, the dimensions are taken in millimeter (mm). The beam has a notch 

of depth 3 mm in the middle on the lower face as shown in the Figure 1.  

  

3.2 Numerical Simulation of Three-Point Beam 

The material properties required in the model include modules of elasticity E , the Poisson’s ratio  , critical fracture 

energy fG , the ultimate tensile strength tf . For the given beam, the fracture energies of mode I and mode II are taken to 

be equal. Such assumption can be made because the scope of the study conducted in this paper is limited only to simulating 

the fracture process. More specifically, the ability of the model to produce the generic load-displacement curve of concrete 

is the center of focus. There is no validation work to be carried out. The problem is considered as a plane strain problem 

and exponential cohesive law has been used. The initial notched is modelled as a discrete crack in the beam.  

The beam has length of 36 mm and depth of 9 mm. The notch has depth of 3 mm and is located in the center of beam. The 

material properties of the beam are taken from [13] and include modulus of elasticity E = 142000 N /
2mm , Poisson’s 

ratio  = 0.35, fracture energy fG = 0.344 N / mm , tensile strength tf = 3.4 N /
2mm and shear strength sf = 3.4 N /

2mm . The fracture energy of mode I has deliberately been taken equal to mode II fracture energy i.e., I II fG G G  . 

The simulation is performed under displacement scheme with load scale of 1.0
3e

in 900 iterations. The beam domain is 

discretized using 6037 quadrilateral elements as shown in Figure 2. In order to reduce the computation time, the Dirichlet 

boundary condition 0  has been assign to the elements close to the support.  

Figure 2.Descritized geometry of the notched concrete beam 

Figure 1.Geometry of notched concrete beam with boundary 

condition 
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4 Results and Discussion 

The first trial of simulation is performed using mesh size of 0.3 mm in the region close to the crack and 0.5 mm in the 

remaining region. It can be observed that during the initial iteration the stress at the crack tip increases. As a result, the 

phase field values increase and upon reaching 1, the element damages completely and the crack progress further. The crack 

path, as shown in the Figure 3, propagates vertically indicating the mode I fracture. This can be attributed to the fact that 

the boundary condition (loading and supports) is such that mode I fracture is favored. As a result, the crack growth is in 

mode I and mode II contribution are negligible. The pattern of crack growth and load-displacement curve obtained are 

similar to the one obtained experimentally during mode I fracture test on three-point notched concrete beam. The load-

displacement curve has been plotted for different length scale parameter in order to study its effect as shown in the Figure 

4. 

The Load-displacement plot shows that for the fixed value of material properties, the length scale parameter has negligible 

effect on the load-displacement curve. The length scale parameter in a sense controls the damage area. A higher value of 

Figure 4. Load-Displacement curve for length scale parameter 

of b=1.3 mm, b=1.5 mm and b=2.0 mm 

Figure 5. Load-Displacement curve for mesh size of 0.3 mm and 

0.4 mm with constant b = 2 mm  

a) b) 

c) d) 

Figure 3.Crack propagation in notched concrete beam under three-point bending, a. crack initaition, b.c.d. crack 

propagates as loads increases 



4th Conference on Sustainability in Civil Engineering (CSCE’22)                                                                                 
Department of Civil Engineering 

Capital University of Science and Technology, Islamabad Pakistan 

Paper ID. 22-203  Page 7 of 8 

b would mean that more area will get damage and so the corresponding peak load will slightly 

increase. In order to study the effect of mesh size on the load-displacement curve, simulations are performed at mesh size 

of 0.3 mm and 0.4 mm at a constant length scale parameter of 2.0 mm. The results shows that the proposed model is almost 

independent of the mesh size as evident in Figure 5. The mesh independency is one of the attributes of phase field model. 

The numerical result generally converges when a relative fine mesh is used. In this case the converging mesh size seems 

to be 0.4 mm.  

5 Conclusion 

After simulating mode I fracture in concrete, it is concluded that the phase field model can simulate the fracture in concrete. 

It can also produce the post-peak strain softening behavior if proper cohesive law is used. In addition, the model is mesh 

independent and the length scale parameter has very little effect on the peak load. The model can be used for simulating 

mixed mode fracture in concrete if relevant parameter related to mixed mode are taken into account.  
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