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Abstract- To reduce the quantity of CO2 emitted within the construction industry, 

cementitious by-products will need to be implemented on a larger scale. In relation to 

the use of by-products, one of the biggest disadvantages is that not only from source to 

source, obtaining a by-product from the same source could result in a variation in the 

chemical and physical properties which will then impact the mechanical properties. 

Therefore, the paper reviewed binary and ternary cementitious pastes that were 

produced from 7 different by-products and predicted the impact of variation in the 

chemical and physical properties on the 14-day compressive strength. The predictions 

and analysis were done with the use of artificial neural networks (ANN). Overall, ANN 

successfully derived an accurate prediction which correlated with the trends that were 

expected. This study noted that if parameters of the overall mix were taken into 

consideration, the increase in SiO2 will have a negative impact while increase in CaO 

would have a positive impact on the 14-day strength. The most accurate form of 

understanding the impact of chemical and physical variability of cementitious 

replacements, took into consideration both Ca/Si ratio and the average particle size.  

Keywords- ANN, Cement Replacements, Predicting Compressive Strength, Binary and Ternary Cementitious Pastes.    

1 Introduction 

Studies have reviewed many combinations of cementitious by-products that can be used as an alternative for Ordinary 

Portland Cement (OPC) [1,2]. The impact of Pulverised Fuel Ash (PFA) and By-Pass Dust (BPD) obtained over a 6-month 

period from the same source was analysed by Limbachiya et al [3]. The results showed a clear variation in the chemical 

and physical properties and the correlating impact on strength development. Shi et al. [4] reported on four different forms 

of glass powder being used as a cementitious replacement. They noted that the particle size has a large effect on the 

compressive strength of concrete, as replacements containing larger particles size produced lower strengths at 28 days. 

Overall results showed one of the biggest disadvantages of using by-products is that not only from source to source, 

obtaining a by-product from the same source could result in a variation in the chemical and physical properties, which 

thereafter will result in a variation in concrete strength.  

When there is variation in OPC, Bogues equations are used to predict the quantity of compounds that will be produced 

during the hydration process and therefore, an indication of strength development. Bogues equations use the oxide 

composition of OPC to determine the level of alite, belite, tricalcium aluminate and tetracalcium aluminoferrite [5], which 

are responsible for different properties within concrete. As well as the individual oxide values, oxide ratios are known to 

help predict the behaviour of concrete. In a review of the influence of the Ca/Si ratio on the compressive strength of 

cementitious calcium–silicate–hydrate binders, it was concluded that as Ca/Si ratio decreases the compressive strength 

increase [6]. It was reported that the diffraction peaks’ intensity of calcite became stronger as the Al/Si ratio decreases [7]. 

It is assumed that as the Al/Si ratio increases the calcite decreases, therefore, greater formation of strength gaining 

compounds. Finally, it was concluded that for lower ratios of Mg/Si, unreacted silica remained and for higher ratios brucite 

precipitated. Therefore, greater forms of deterioration are likely to occur at higher ratio levels [8].   
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When it comes to a variation of properties in cement replacements, there are no such tools that can be used to help 

understand the impact on strength development. Studies have used artificial neural networks (ANN) to predict the strength 

of concrete using more sustainable materials. ANN was used to understand the effect of Nano and Micro Silica on the 

compressive and flexural strength of cement mortar [9]. The variables in this case were the quantity of different 

components used in the mortar mixture. The study concluded that the ANN model was able to predict the compressive 

strength to a high level of accuracy. Alongside ANN, Fuzzy Logic (FL) models have been used by previous studies to help 

predict the behaviour of concrete [10,11]. Although both models can provide high levels of accuracy, both studies 

concluded that ANN provided a greater level of statistical accuracy in comparison to FL. Currently, there are very few 

studies that have looked at a range of chemical and physical variations in by-product combinations and the impact of this 

on the strength of cementitious mixes consisting of binary and ternary blends.  Therefore, the aim of this study is to use 

ANN to predict the impact of chemical and physical variability in cementitious by-products. The objectives are to firstly, 

produce ternary and binary cementitious pastes. Secondly, use the chemical and physical properties of these mixes as input 

parameters to help predict and determine the parameters that have an impact on the compressive strength. The significance 

of this work is that it will allow for a better understanding on the impact of chemical and physical variability when using 

binary and ternary cementitious pastes and determine how ANN can be used to help predict this behaviour. 

 

2    Research Methodology  
2.1 Cementitious materials  

The OPC fulfilled the requirements of BS EN 197-1 CEM I [12]. The cementitious materials used in this study were 

obtained from a variety of sources. Ground Granulated Blast Furnace Slag (GGBS), (PFA), Metakaolin (MK), BPD and 

Silica Fume (SF) came in powder form to be used within the cementitious binders, while Basic Oxygen Slag (BOS) and 

Glass Powder (GP) came in a crushed form and required further grinding before adequate levels of fineness were achieved.  

Table 1 provides the physical and chemical properties using of Hydro 2000/Mastersizer 2000 and X-Ray Fluorescence 

(XRF) respectively. 

 
Table 1 Chemical and physical properties of OPC and Cement Replacements. 

Composition SiO2 

(%) 

TiO2 

(%) 

Al2O3 

(%) 

Fe2O3 

(%) 

MnO 

(%) 

MgO 

(%) 

CaO 

(%) 

Na2O 

(%) 

K2O 

(%) 

P2O5 

(%) 

SO3 

(%) 

Average 

Particle 

Size (µm) 

OPC 19.42 0.36 4.55 2.49 0.02 1.03 60.60 0.22 0.57 0.2 3.62 38 

PFA 45.85-

52.29 

0.98-

0.82 

24.43-

19.76 

10.38-

7.55 

0.16-

0.06 

2.09-

1.44 

6.13-

2.81 

0.91-

0.63 

2.75-

2.02 

0.51-

0.22 

0.84-

0.48 

55-32 

GGBS 33.28 0.57 13.12 0.32 0.32 7.74 37.16 0.33 0.48 0.01 2.21 20 

SF 94.21 0.01 0.48 0.71 0.01 0.55 0.37 0.35 1.15 0.04 0.17 0.7 

BOS 13.94 0.7 2.98 25.99 3.17 6.56 39.57 0.06 0.03 1.51 0.28 30 

GP 69.56 0.07 2.01 0.65 0.32 1.19 10.61 12.28 0.98 0.03 0.18 100 

MK 54.06 0.02 40.65 0.77 0.01 0.23 0.03 0.17 1.89 0.16 0.02 7 

BPD 17.34-

12.79 

0.23-

0.19 

4.26-

3.47 

2.36-

1.88 

0.05-

0.04 

1.11-

0.82 

53.6-

44.03 

1.16-

0.5 

10.06-

4.28 

0.25-

0.12 

12.22-

6.25 

67-32 

2.1 Mix Design and Fabrication 

130 cementitious pastes were produced, tested, and analysed by the author in the laboratory for this study. All cementitious 

pastes were produced as a semi dry mix with constant w/c ratio of 0.2, therefore the variability in the results could only be 

due to the difference in the chemical and physical properties of the materials used. To produce samples, the binary//ternary 
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mixtures were mixed thoroughly before water was added and compaction was applied. Thereafter, the samples were cured 

and tested following guidance in BS EN1338:2003. The paste cubes had a dimension of 50x50x50mm, and the compressive 

strength was obtained at 14 days. The mixes produced had varying levels of OPC and by products. OPC, PFA, BPD, 

GGBS, GP, SF, BOS and MK was used to produce the cement pastes by up to 60%, 80%,10%, 80%, 15%, 15%, 45% and 

30% by weight respectively. All mixes can be found in Appendix A. 

3. Artificial Neural Network setup 

3.1 Input and target parameters 

Input properties were based on the combined oxide properties of ternary and binary mixes, which were obtained by using 

Equation 1 that was developed for this study. Table 2 provides the actual oxide compositions determined using XRF for 

11 ternary and binary mixes, as well as the predicted oxide compositions using Equation 1. Based on these results, Equation 

1 was determined to provide an accurate assumption on the combined oxide percentage and therefore be used in the ANN 

models. 

Inputn = (
%OPC

100
∗ OPCn) + (

%CR1

100
∗ CR1n) + (

%CR2

100
∗ CR2n)                       (Equation 1) 

Where Inputn is the input parameter for the ANN model, %OPC is the percentage of OPC used in the mix, n represents 

the chemical or physical property, OPCn is the quantity of n in OPC, %CR1 and %CR2 are the percentages of cement 

replacements used in the mix and CR1n and CR2n are the quantity of n in the cement replacement.  

Table 2 Accuracy of Predicted Ternary and Binary oxides 

 

 

 

 

 

 

 

 

 

 

3.2 Neural Network setup. 

Figures 1 and 2 show the ANN models developed in this study, namely NN 5-7 and NN 4-7. Seven neurons in the 

hidden layer were chosen as they provided accurate predictions. The five input parameters for NN 5-7 were based on the 

combined chemical properties that form alite, belite, tricalcium aluminate and tetracalcium aluminoferrite, as well as the 

average particle size. The four input parameters for NN 4-7 were ratios that are known to have a direct impact on 

hydration compounds and formation of calcium silicate hydrate (CSH) as well as the average particle size.  

To have a more effective ANN setup, the input and target parameters are normalised [13]. The calculated output will then 

also provide a normalised value, which will require it to be reverse transformed to obtain the actual target value. To 

normalize the input and output parameters, Equation 2 was applied to all values. Where amin and amax are constants, bmax is 

the greatest value of that parameter, bmin is the lowest value of that parameter, b is the actual value and a is the normalised 

value. Table 3 provides the values required to de-normalise the values. 

a = (amax-amin)*(b-bmin)/(bmax-bmin) + amin                                                                (Equation 2) 

 SiO2 (%) CaO (%) Al2O3 (%) Fe2O3 (%) 

Mix Actual Predicted Actual Predicted Actual Predicted Actual Predicted 

1  24.53 24.96 50.49 51.22 6.73 7.98 1.69 1.62 

2 31.25 32.22 45.57 45.91 5.16 5.76 1.74 1.69 

3 20.62 21.10 50.27 51.71 5.33 5.95 6.31 6.76 

4 23.42 24.14 50.96 52.05 6.40 7.53 1.77 1.72 

5 23.96 24.71 49.23 50.52 6.69 7.94 1.64 1.61 

6 16.51 17.23 51.21 52.19 3.64 3.92 11.18 11.89 

7 27.98 30.75 38.42 37.66 10.19 12.38 4.65 5.58 

8 35.49 37.72 37.62 37.23 7.55 8.83 3.60 4.16 

9 33.91 34.10 44.82 45.71 5.76 6.08 1.56 1.68 

10 31.60 31.06 46.25 47.55 5.72 6.71 1.63 1.66 

11 28.94 29.53 48.75 48.46 5.94 7.03 1.70 1.65 
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                         Figure 1 NN 5-7 Model                                                        Figure 2 NN 4-7Model. 

 

Table 3 Parameters used to normalise input and target values 

Input/Target Parameter amax amin bmin bmax 

SiO2 1 -1 16.12 53.30 

CaO 1 -1 5.69 60.23 

Al2O3 1 -1 3.61 26.34 

Fe2O3 1 -1 0.49 16.59 

Ca/Si 1 -1 0.11 3.15 

Al/Si 1 -1 0.18 0.58 

Mg/Si 1 -1 0.02 0.28 

Average Particle Size (µm) 1 -1 18.01 58.9 

fc(MPa) 1 -1 0 70.40 

 

Once the input and output parameters were determined, the next step was to define the neural network. A pre-installed 

neural network fitting app in Matlab was used in this study. The neural network fitting app solves an input-output fitting 

problem with a two-layer feedforward neural network. The network was a two-layer feed-forward network with sigmoid 

hidden neurons and linear output neurons and trained with Levenberg-Marquardt backpropagation algorithm, unless there 

is not enough memory, in which case scaled conjugate gradient backpropagation will be used [13]. The backpropagation 

algorithm involves two phases. Firstly, the forward phase where the activations are propagated from the input to the output 

layer [11]. Secondly, the backward phase where the error between the observed actual value and the desired nominal value 

in the output layer is propagated backwards to modify the weights and bias values [11]. Equations 3 and 4 provide the 

calculations that includes the transfer function required to determine the normalised target value based on the inputs 

provided [14]. Where, Os is the normalised ouput value, q is the number of input parameters; r is the number of hidden 

neurons; s is the number of output parameters; Biass and Biask are the biases of sth output neuron and kth hidden neuron 

(Hk), respectively; with j,k is the weights of the connection between Ij and  are the weights of the connection 

between Hk and Os 

 
𝑂𝑠 = 𝐵𝑖𝑎𝑠𝑠 +  ∑ 𝑤𝑘,𝑙

ℎ𝑜𝑟
𝑘=1 .

2

(1+ 𝑒(−2 𝑥 𝐻𝑘))−1
                                                                                        (Equation 3) 

 
𝐻𝑘 =  𝐵𝑖𝑎𝑠𝑘 + ∑ 𝑤𝑗,𝑘

𝑖ℎ .
𝑞
𝑗=1 𝐼𝑗                                                                                                         (Equation 4) 

 
For training, validation and testing the data sets were divided into 70%, 15% and 15% respectively. To assess the accuracy 

of the output the regression (R2), Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and Mean 

Square Error (MSE) were calculated using equations 5, 6, 7 and 8 respectively. 

SiO2 

fc Al2O3 

Fe2O3 

Average 

Particle Size 

 

Biass 

CaO 

Biask 
Biass 

fc 

Ca/Si 

Mg/Si 

Average 

Particle Size 

Al/Si 

Biask 
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𝑅2 = 1 − (
∑ (𝑡𝑖−𝑂𝑖)2𝑁

𝑖=1

∑ (𝑡𝑖−𝑡𝑚)2𝑁
𝑖=1

)                                                                                                                       (Equation 5) 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑂𝑖−𝑡𝑖)2𝑁

𝑖=1

𝑁
                                                                                                           (Equation 6) 

 

𝑀𝐴𝑃𝐸 =  
1

𝑁
∑ |

𝑂𝑖−𝑡𝑖

𝑡𝑖
| × 100𝑁

𝑖=1                                                                                               (Equation 7) 

 

𝑀𝑆𝐸 =
∑ (𝑂𝑖−𝑡𝑖)2𝑁

𝑖=1

𝑁
                                                                                                                 (Equation 8) 

 

Where ti is the actual compressive strength of concrete mixes, tm is the mean compressive strength of concrete mixes, Oi is 

the predicted value and N is the total number of data points in each set of data. 

 

3.3 Impact of Individual Input  

As well as assessing the accuracy of the models with Equations 5 and 6, it is also important to understand the impact of 

input parameters on the output value. This will allow for further validation of the ANN model and algorithms, as it will 

have the potential to be used for values outside of those used in this model. It is important to note that the values will still 

have to remain within the ranges stated in Table 3. To determine the impact of each input parameter, the connection weight 

approach was adopted. The connection weight approach uses raw connection weights, which accounts for the direction of 

the input–hidden–output relationship and results in the correct identification of variable contribution [15]. Based on this 

approach, Equation 9 was used to determine impact of each input parameter. A negative value will mean that an increase 

in this parameter will decrease the output value, a positive value will mean that an increase in this parameter will increase 

the output value and those values with the largest value are those with the largest impact. 

 

𝐼𝑛𝑝𝑢𝑡𝑥 = ∑ 𝐻𝑖𝑑𝑑𝑒𝑛𝑋𝑌
𝐸
𝑌=𝐴                                                                                       (Equation 9) 

3 Results 

3.1 Predicting the impact of chemical and physical variability 

 

 

 

 

 

 

 

 

 

Figure 3 Regression of Actual fc vs predicted fc for NN 5-7                              Figure 4 Influence of each input for NN 5-7  
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𝑓𝑐 = −0.84 −  1.47 (
2

(1+ 𝑒(−2 𝐻1))
− 1) –  0.29 (

2

(1+ 𝑒(−2 𝐻2))
 − 1) − 0.74 (

2

(1+ 𝑒(−2 𝐻3))
− 1) + 1.86 (

2

(1+ 𝑒(−2 𝐻4))
−

1) –  1.89 (
2

(1+ 𝑒(−2 𝐻5))
− 1) − 0.25 (

2

(1+ 𝑒(−2 𝐻6))
− 1) +  0.55 (

2

(1+ 𝑒(−2 𝐻7))
− 1)  

 
(Equation 10) 

Where: 

H1= -1.80 + 0.29SiO2 + 0.20CaO + 1.90 Al2O3- 4.06Fe2O3 + 1.49 Average Particle Size (µm) 

H2= 1.97 + 0.52SiO2 – 1.01CaO + 2.29Al2O3 + 0.15Fe2O3 -0.63 Average Particle Size (µm) 

H3= -0.03 + 1.22SiO2 - 0.71CaO – 2.74Al2O3 + 0.22Fe2O3 – 1.19 Average Particle Size (µm) 

H4= -0.87 + 0.25SiO2 + 0.43CaO + 1.68Al2O3 – 2.27Fe2O3 + 0.35 Average Particle Size (µm) 

H5= 1.08 – 0.42SiO2 + 0.23CaO + 1.96Al2O3 - 0.38Fe2O3 – 0.42 Average Particle Size (µm) 

H6= 1.84 + 2.71SiO2 – 4.00CaO + 0.46Al2O3 – 1.37Fe2O3+ 3.03 Average Particle Size (µm) 

H7= -2.42 + 1.47SiO2 – 1.56CaO – 0.07Al2O3 – 2.45Fe2O3 – 4.36 Average Particle Size (µm) 

 

Figure 3 provides the predicted vs experimental strengths for the NN 5-7 model. Equation 10 is derived from algorithms 

used in the ANN model for predicting the 14-day compressive strength. The R2, RMSE, MSE and MAPE values were 

0.95,4.36, 18.98 and 17.97, respectively. Overall, the results show that ANN can predict compressive strength to a high 

level of accuracy when oxide values are considered using Equation 1. It is assumed that the accuracy is closely related to 

the input parameters behaving in the way that is expected. Figure 4 provides the impact that each input parameter has on 

the output value. Results show that as SiO2, Al2O3 and Average particle size increases, there will be a negative impact on 

the output and that as CaO and Fe2O3 increases, there is a positive impact on the output. Studies [16][17][18] have 

previously noted that cement replacements with a high SiO2 content provide greater strength development through 

secondary reaction with Ca (OH)2. However, when SiO2 is determined using Equation 1, results show that overall, as SiO2 

increases the strengths tend to decrease and that as CaO increases there is an increase in strength. This therefore correlates 

with result that you would expect to occur in OPC hydration in which the ratio of Ca/Si dictates the formation of compounds 

and therefore strength development. Fe2O3 is the input that is responsible for the greatest strength gain. Although studies 

[19] have reported on the positive impact of Nano Fe2O3 on the compressive strength of concrete, the strength development 

in concrete is primarily down to the formation of Calcium silicate (Ca3SiO5) and Larnite (Ca2SiO4). Overall, the biggest 

impact on strength development was the average particle size. Results show that as average particle size increases the 

strength decreases. This correlated with conclusions made is previous studies [4] and is assumed to be due to the water not 

being able to react with the oxides within the inner particle of the material.  

 

 

 

 

 

 

 

 

 

 

Figure 5 Regression of Actual fc (MPa) vs predicted fc (MPa) for NN 4-7       Figure 6 Influence of each input for NN 5-7-1  
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𝑓𝑐  =  1.04 +  0.67 (
2

(1+ 𝑒(−2 𝐻1))
− 1) +  0.38 (

2

(1+ 𝑒(−2 𝐻2))
− 1) –  0.36 (

2

(1+ 𝑒(−2 𝐻3))
− 1) + 0.64 (

2

(1+ 𝑒(−2 𝐻4))
− 1) +

 0.73 (
2

(1+ 𝑒(−2 𝐻5))
− 1) +  1.72 (

2

(1+ 𝑒(−2 𝐻6))
− 1) +  1.00 (

2

(1+ 𝑒(−2 𝐻7))
− 1)                                                         

(Equation 11) 

Where: 

H1= 1.79 + 0.34Ca/Si – 1.79Al/Si - 1.86 Mg/Si – 0.29 Average Particle Size (µm) 

H2= 1.20 – 0.43Ca/Si – 2.36Al/Si – 0.26 Mg/Si – 0.15 Average Particle Size (µm) 

H3= 0.31 – 0.66Ca/Si + 2.31Al/Si + 2.17 Mg/Si + 3.15 Average Particle Size (µm) 

H4=0.02 – 1.16a/Si + 0.12Al/Si + 1.10 Mg/Si + 1.41 Average Particle Size (µm) 

H5= -0.74 + 0.89Ca/Si + 1.92Al/Si + 0.37 Mg/Si – 0.64 Average Particle Size (µm) 

H6=1.76 + 2.61Ca/Si + 0.08Al/Si - 1.77 Mg/Si – 0.18 Average Particle Size (µm) 

H7= 3.96 – 1.50Ca/Si – 1.67Al/Si + 1.43 Mg/Si + 0.26 Average Particle Size (µm) 

 

Figure 5 provides the predicted vs experimental strengths for the NN 4-7 model. Equation 11 is derived from algorithms 

used in the ANN model for predicting the 14-day compressive strengths. The R2, RMSE, MSE and MAPE values are 

0.96,3.61, 13.05 and 14.92, respectively. In comparison to oxide percentages, oxide ratios predict output with a higher 

level of accuracy and a greater level of confidence. It is assumed R2, RMSE, MSE and MAPE provide a greater level of 

accuracy as the ratios correlate to the formation of compounds that are responsible for strength development. Therefore, 

ANN can correlate more accurately with the output parameter.  Figure 6 shows that the only ratio that contributes to 

strength development is Ca/Si, while Al/Si, Mg/Si and average particle size all have a negative impact. Overall, these 

results show that when taking into consideration the combined oxide values, the trends follow those that are noted for OPC 

hydration. Alite has a Ca/Si ratio of 3:1 and C-S-H has a Ca/Si ratio of approximately 2:1, so excess lime is available to 

produce Ca(OH)2 [20]. Alite is responsible for early age strength development as well as formation of Ca(OH)2 and results 

show that as Ca/Si increases, the trend is that strength properties will also increase. When reviewing Al/Si, trends show a 

decrease in strength as the ratio increases. This correlates with the results that were obtained, in which it was concluded 

that depending on the Al2O3/SiO2 ratio, the ye’elimite and gehlenitephases were formed in different proportions [21]. It is 

therefore assumed that in the mixes reviewed, at lower ratios of Al/Si, content of gehlenite exceeds the ye’elimite content 

therefore decreasing strength properties. 

4 Conclusion 

The overall the aim of this study was to produce an ANN system that can be used to predict the compressive strength of 

cement paste at 14 days and to help in gaining a better understanding of the chemical and physical properties of by-products 

that impact strength.  Based on the report the following conclusions can be made: 

• Cementitious replacements for OPC come from a variety of sources with varying chemical and physical 

properties. Based on the level of replacement, the use of these materials will have an impact on the hydration 

compounds produced and therefore, strength. 

• Although previous studies have noted that a high SiO2 content in the cement replacement would allow for an 

enhancement in strength with secondary hydration of Ca(OH)2. This study noted that if parameters of the overall 

mix as shown in Equation 1 were taken into consideration, the increase in SiO2 will have a negative impact on 

strength.  

• When reviewing oxide values, oxide ratios provided the most accurate trendlines. Results showed when taking 

all parameters in consideration, the trend was like that of OPC hydration alone, in which Ca/Si determined the 

early age strength.  

• Overall, results showed that the most accurate form of understanding the impact that chemical and physical 

variability of cementitious replacements would have, took into consideration both Ca/Si and the average particle 

size.   

• ANN is a powerful tool in helping us gain a better understanding of the impact that each input has in relation to 

the target and allowing accurate prediction of the strength of concrete which incorporates cement replacements. 

• ANN was successfully used in this study to provide an accurate prediction which correlated with the trends that 

were noted in the oxide analysis.    

https://www.sciencedirect.com/topics/engineering/gehlenite


 

 

3rd Conference on Sustainability in Civil Engineering (CSCE’21)                                                                                 

Department of Civil Engineering 

Capital University of Science and Technology, Islamabad Pakistan 

 

Paper No. 21-XXX  Page 8 of 10 

Acknowledgment 

The authors gratefully appreciate and acknowledge the financial support from the 2 Engineering and Physical Sciences 

Research Council who had sponsored the PhD programme. The authors also acknowledge the support and facilities that 

were provided at Coventry University and London South Bank University. 

References

[1] Qureshi, L., Ali, B. and Ali, A. (2020). Combined effects of supplementary cementitious materials (silica fume, GGBS, 

fly ash and rice husk ash) and steel fiber on the hardened properties of recycled aggregate concrete, Construction 

and Building Materials, 263, 120636. 

[2] Gehlot, T., Sankhla, S. and Parihar, S. (2021). Modelling compressive strength, flexural strength and chloride ion 

permeability of high strength concrete incorporating metakaolin and fly ash. Materials Today Proceedings, in 

press. 

[3] Limbachiya, V., Ganjian, E. and Claisse, P. (2015). The impact of variation in chemical and physical properties of PFA 

and BPD semi-dry cement paste on strength properties, Construction and Building Materials, 96, pp. 248-255 

[4] Shi, C., Wu, Y., Riefler, C., and Wang, H. (2005). Characteristics and Pozzolanic Reactivity of Glass Powders. Cement 

and Concrete Research, 35 (5),pp. 987-993 

[5] Neville, A. (1996) Properties of Concrete. Fourth Edition, Wiley. 

[6] Kunthur, W., Ferreiro, S. and Skibsted,J. (2017). Influence of the Ca/Si ratio on the compressive strength of 

cementitious calcium–silicate–hydrate binders, Journal of Materials Chemistry A, 5, pp. 17401-17412. 

[7] Li, J., Yu, Q., Huang, H. and Yin, s. (2019). Effects of Ca/Si Ratio, Aluminum and Magnesium on the Carbonation 

Behavior of Calcium Silicate Hydrate, Materials. 12, 1268. 

[8] Nied, D., Enemark-Rasmussen, K., L'Hopital, E., Skibsted, J., & Lothenbach, B. (2016). Properties of magnesium 

silicate hydrates (M-S- H). Cement and Concrete Research, 79, pp. 323-332 

[9] ]  Azimi-Pour, M. and Eskandari-Naddaf, H. (2018) ANN and GEP prediction for simultaneous effect of nano and 

micro silica on the compressive and flexural strength of cement mortar, Construction and Building Materials, 189 

, pp. 978-992. 

[10] Ozcan, F., Atis, C., Karahan, O., Uncuoglu, E. and Tanyildizi, H. (2009). Comparison of artificial neural network and 

fuzzy logic models for prediction of long-term compressive strength of silica fume concrete. Advances in 

Engineering Software, 40 (9), pp.856-863. 

[11] Golafshani, E.M., Rahai, A., Sebt, M.H. and Akbarpour, H. (2012). Prediction of bond strength of spliced steel bars 

in concrete using artificial neural network and fuzzy logic.  Construction and Building Materials, 36, pp.411-418.  

[12] British Standard Institution, BS EN 197-1 Cement Composition, specifications and conformity criteria for common 

cements BSI, London (2011)  

[13] MATLAB and Statistics Toolbox Release 2019a, The MathWorks, Inc., Natick, Massachusetts, United States. 

[14] Gupta, T., Patel, K. A., Siddique, S., Sharma, R. K. and Chaudhary, S. (2019) Prediction of mechanical properties of 

rubberised concrete exposed to elevated temperature using ANN, Measurement, 147, pp. 106870. 

[15] Olden, J. D., Joy, M. K. and Death, R. G. (2004) An accurate comparison of methods for quantifying variable 

importance in artificial neural networks using simulated data, Ecological Modelling, 178 (3), pp. 389-397. 

[16] Behnood, A. and Ziari, H. (2008). Effects of Silica Fume Addition and Water to Cement Ratio on the Properties of 

High-Strength Concrete After Exposure to High Temperatures. Cement and Concrete Composites 30 (2), 106-

112 

[17] Papadakis, V. G. (1999) Effect of Fly Ash on Portland Cement Systems: Part I. Low- Calcium Fly Ash. Cement and 

Concrete Research ,29 (11), 1727-1736  
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Appendix A 

1 OPC20/PFA80* 44 OPC20.63/PFA68.12/SF11.25 87 OPC5/GGBS60/BOS25 

2 PFA80/MK20 45 OPC5/PFA80/SF15 88 OPC30/GGBS40/BOS30 

3 OPC14/PFA56MK30 46 OPC12.5/PFA80/SF7.5 89 OPC35/GGBS20/BOS45 

4 OPC14/PFA66/MK20 47 OPC60/PFA25/SF15 90 OPC45/GGBS40/BOS15 

5 OPC24/PFA66/MK10 48 OPC48.13/PFA48.12/SF7.5 91 OPC45/GGBS20/BOS35 

6 OPC44/PFA26/MK30 49 OPC60/PFA32.5/SF7.5 92 OPC25/GGBS60/BOS15 

7 OPC60/PFA40 50 OPC28.13/PFA68.12/SF3.75 93 OPC15/GGBS40/BOS45 

8 OPC60/MK40 51 OPC36.25/PFA56.25/SF7.5 94 GGBS40/BOS60 

9 OPC27/PFA46/MK10 52 OPC15/PFA80/SF5 95 GGBS60/BOS40 

10 OPC28/PFA52/MK20 53 OPC48.13/PFA40.62/SF11.25 96 OPC47.5/PFA47.5/GP5 

11 OPC60/GGBS40 54 OPC20.63/GGBS68.12/SF11.25 97 OPC30/PFA50/GP20 

12 OPC14/GGBS56/MK30 55 OPC5/GGBS80/SF15 98 OPC27.5/PFA67.5/GP5 

13 OPC14/GGBS66/MK20 56 OPC12.5/GGBS80/SF7.5 99 OPC47.5/PFA37.5//GP15 

14 OPC44/GGBS46/MK10 57 OPC60/GGBS25/SF15 100 OPC35/PFA55/GP10 

15 OPC28/GGBS52/MK20 58 OPC48.13/GGBS48.12/SF7.5 101 OPC60/PFA20/GP20 

16 OPC24/GGBS66/MK10 59 OPC60/GGBS32.5/SF7.5 102 OPC10/PFA80/GP10 

17 OPC44/GGBS26/MK30 60 OPC28.13/GGBS68.12/SF3.75 103 OPC17.5/PFA67.5/GP15 

18 OPC20/GGBS80 61 OPC36.25/GGBS56.25/SF7.5 104 OPC60/PFA30/GP10 

19 OPC37.5/PFA57.5/BPD5 62 OPC48.13/GGBS40.62/SF11.25 105 OPC47.5/GGBS47.5/GP5 

20 OPC23.75/PFA68.75/BPD2.5 63 OPC43/PFA38/GGBS19 106 OPC30/GGBS50/GP20 

21 OPC28.75/PFA68.75/BPD25 64 OPC24/PFA58/GGBS18 107 OPC27.5/GGBS67.5/GP5 

22 OPC15/PFA80/BPD5 65 OPC24/PFA18/GGBS58 108 OPC47.5/GGBS37.5//GP15 

23 OPC60/PFA30/BPD10 66 OPC14/PFA28/GGBS58 109 OPC35/GGBS55/GP10 

24 OPC48.75/PFA48.75/BPD2.5 67 OPC26/PFA37/GGBS37 110 OPC40/GGBS60 

25 OPC60/PFA35/BPD5 68 OPC14/PFA58/GGBS28 111 OPC60/GGBS20/GP20 

26 OPC10/PFA80/BPD10 69 OPC44/PFA18/GGBS38 112 OPC10/GGBS80/GP10 

27 OPC48.75/PFA43.75/BPD7.5 70 OPC5/PFA60/BOS25 113 OPC17.5/GGBS67.5/GP15 

28 OPC37.5/GGBS57.5/BPD5 71 OPC30/PFA40/BOS30 114 OPC60/GGBS30/GP10 
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29 OPC23.75/GGBS68.75/BPD2.5 72 OPC35/PFA20/BOS45 115 OPC90/PFA-JUL10* 

30 OPC28.75/GGBS68.75/BPD25 73 OPC45/PFA40/BOS15 116 OPC90/PFA-AUG10* 

31 OPC15/GGBS80/BPD5 74 OPC45/PFA20/BOS35 117 OPC90/PFA-SEP10* 

32 OPC60/GGBS30/BPD10 75 OPC40/BOS60 118 OPC90/PFA-OCT10* 

33 OPC48.75/GGBS48.75/BPD2.5 76 OPC25/PFA60/BOS15 119 OPC90/PFA-NOV10* 

34 OPC60/GGBS35/BPD5 77 OPC15/PFA40/BOS45 120 OPC90/PFA-DEC10* 

35 OPC10/GGBS80/BPD10 78 OPC60/BOS40 121 OPC80/PFA-JUL20* 

36 OPC48.75/GGBS43.75/BPD7.5 79 OPC40/PFA60 122 OPC80/PFA-AUG20* 

37 OPC70/PFA-NOV30* 80 OPC90/BPD-JUL10* 123 OPC80/PFA-SEP20* 

38 OPC70/PFA-DEC30* 81 OPC90/BPD-AUG10* 124 OPC80/PFA-OCT20* 

39 OPC95/BPD-JUL5* 82 OPC90/BPD-SEP10* 125 OPC80/PFA-NOV20* 

40 OPC95/BPD-AUG5* 83 OPC90/BPD-OCT10* 126 OPC80/PFA-DEC20* 

41 OPC95/BPD-SEP5* 84 OPC90/BPD-NOV10* 127 OPC70/PFA-JUL30* 

42 OPC95/BPD-OCT5* 85 OPC90/BPD-DEC10* 128 OPC70/PFA-AUG30* 

43 OPC95/BPD-NOV5* 86 OPC95/BPD-DEC5* 129 OPC70/PFA-SEP30* 

    130 OPC70/PFA-OCT30* 

*OPC20/PFA80- 20%OPC and 80%PFA in the cementitious paste 


