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Abstract- Distress in a pavement is a serious problem which can reduce the service life 

of a pavement. For an efficient design and analysis of pavements, use of efficient yet 

accurate computational models play a key role. Several numerical models have been used 

in the past to understand the mechanics of cracking in asphalt concrete. Interface elements 

with cohesive zone model have been successfully employed by many researchers 

however, the method requires the crack path to be known a priori and the cracks can only 

grow along element boundaries. On the contrary, continuum damage/ plasticity models 

offer the ease of damage modeling, but these methods show mesh dependency. In this 

paper a phase field diffuse damage model integrated with cohesive zone concept is used 

to simulate damage in asphalt concrete. The proposed model can simulate multiple 

interacting cracks propagating arbitrarily through the finite element mesh without the 

need of any ad hoc criterion. The effectiveness of the model is demonstrated using a 

single edge notch beam. Numerical results are validated against experimental 

observations. The obtained load versus crack mouth opening displacement curve 

quantitatively and damage profile qualitatively show good agreement with the 

experimental observations. The proposed model successfully simulated sharp crack and 

does not suffer from mesh dependency problem. Additionally, the model is also able to 

overcome the issue of complaint material behavior before cracking due to the presence of 

dummy stiffness in the interface element formulations. 

Keywords- Asphalt concrete, finite element method, phase field method, mode-I fracture.  

1 Introduction 

Distress in asphalt pavements can severely affect its performance. Cracking in pavements not only increases the 

maintenance cost but also can affect the durability and life span of the pavement. Therefore, it is pivotal to understand the 

damage mechanics of asphalt mixtures for an efficient design. Numerical analysis of materials and structures plays a key 

role in the design process and is useful to simulate damage under various boundary conditions. 

A finite element method with interface elements is often used to simulate fracture in asphalt mixtures. Soares et al. [1] 

used interface elements with cohesive zone model to simulate fracture in an indirect tension test specimen. Song et al. [2] 

used interface elements with exponential cohesive constitutive law to simulate mode-I cracking in asphalt concrete beam. 

Dave et al. [3] used the cohesive zone model to simulate cracking in asphalt mixtures due to thermal loads. Due to the 

restriction of a crack to propagate along element boundaries in the interface element model, mesh independent crack growth 

methods like extended finite element method (XFEM) [4] is also explored by many researchers. Mahmoud et al. [5] and 

Islam et al. [6] used extended finite element method with cohesive zone model to simulate fracture in asphalt mixtures. 

Even though, XFEM is a good method to simulate mesh independent cracking, modelling complex crack typologies is still 

a challenge. Moreover, for the case of multiple interacting cracks the method becomes cumbersome from a computer 
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implementation point of view. On the contrary, diffuse damage models were also used by some researchers. Park et al. [7] 

presented a viscoelastic damage model for the asphalt mixture. Chehab [8] proposed a viscoelastic-plastic approach for 

damage in asphalt mixtures. However, these methods suffer from mesh dependency problems. As the mesh is refined the 

dissipated energy approaches zero. 

This paper presents a phase field model to simulate damage in asphalt mixtures. In the phase field method, a solid material 

is divided into damage and undamaged phases using a damage phase field variable. A free energy functional/crack potential 

is constructed based on the damage phase field variable and the whole system evolves towards the direction which 

minimizes this potential. The phase field model can efficiently simulate crack nucleation, propagation and complex crack 

typologies without the need of any crack tracking algorithm and with a simple computer implementation unlike interface 

element formulations. Moreover, the method does not suffer from the mesh dependency problem as observed in the 

continuum damage formulations. Bourdin et al. [9] used a variational approach to regularize the crack potential. The 

pioneering work of Bourdin et al. [9] on modelling brittle fracture in solids using phase field model has led to many 

advancements in this model. Miehe et al. [10] and Miehe et al. [11] presented a phase field model using thermodynamic 

considerations for damage modelling in brittle materials. Recently, Wu [12] extended the phase field model to simulate 

brittle and quasi-brittle fracture in solids by integrating a cohesive zone model with the phase field model.  

In this paper the phase field model of Wu [12] is used to simulate quasi brittle fracture in asphalt concrete. To the best of 

authors knowledge, very little work has been done on simulating damage in asphalt mixtures using the phase field model. 

It is worth mentioning the work of Hou et al. [13] and Hou et al. [14] in simulating fracture in asphalt mixtures using phase 

field approach. However, their model can only simulate brittle fracture therefore it is not suitable for simulating quasi-

brittle behaviour of asphalt mixtures. 

The present contribution therefore aims at exploring the appropriateness of the phase field model for damage modelling in 

asphalt mixture. In particular, phase field model coupled with cohesive zone approach is used to simulate quasi brittle 

behaviour of asphalt mixture. Such a numerical tool will help in an efficient design, prediction and understanding of 

damage in asphalt pavements under various conditions. The bulk material is modelled as a homogeneous solid. Damage 

in asphalt concrete is represented with the damage phase field variable. The inelastic material behaviour around the crack 

tip is modelled using a bi-linear traction separation law. In order to solely investigate the performance of the phase field 

model to simulate damage in asphalt mixtures, numerical test at a uniform low temperature of -10oC is performed. 

Therefore, strain rate/temperature effects are not considered in this contribution.  

The remainder of the paper is organized as follows. Section 2 presents the governing equations of the phase field model 

and its finite element discretization.  Section 3 discusses the analysed model problem and implementational aspects of the 

phase field model in a finite element computer program. A single edge notch beam is numerically simulated to investigate 

the performance of the phase field model. Numerical results are validated against the experimental observations of Song 

et al. [2]. Discussion on the analysis results is given in section 4. Section 5 presents main conclusions drawn from the 

analysis. 

2 Diffuse damage model for asphalt concrete 

Consider a body with domain 𝛺 with its external boundary denoted by 𝜕𝛺. The body is subjected to prescribed 

displacements 𝑢́ on the surface 𝜕𝛺𝑢 and prescribed tractions 𝑡́ on the surface 𝜕𝛺𝑡, figure 1. The domain 𝛺 is also subjected 

to a body force 𝑏 and contains an internal sharp crack S. Within the context of phase field method, the crack surface is 

regularized over the localization band 𝐵, such that, the sharp crack surface As is approximated with a diffuse functional 

Ad. 

 𝐴𝑠 = ∫𝛿𝑠𝑑𝑉
𝐵

≈ 𝐴𝑑 = ∫𝛾(𝑑, 𝛻𝑑)𝑑𝑉
𝐵

 (1) 
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in which 𝛾 is the crack surface density function approximating the Dirac-delta function 𝛿𝑠 of a sharp crack. A damage 

phase field 𝑑 is defined over the domain 𝛺 such that 𝑑=1 representing the fully damaged material and 𝑑 = 0 represents 

the undamaged material. The damage phase field, d varies between 0 and 1 within the localization band B.  

 

Figure 1: A solid body with a diffuse crack 

2.1  Governing equations 

The total potential 𝛱 of a system is defined as the sum of internal potential energy, fracture energy and external potential 

energy, mathematically given as 

 
Π(𝑢, 𝑑) = ∫   

Ω

ω(d)Ψ𝑜⏟    𝑑𝑉

strain energy density,Ψ

+∫ 𝐺𝑓
1

𝑐𝑜
[
1

𝑏
α + 𝑏|∇𝑑|2]

⏟          
𝑐𝑟𝑎𝑐𝑘 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦,γ 

𝑑𝑉 − Π𝑒𝑥𝑡

Ω

 
(2) 

𝐺𝑓 is the fracture energy, b is the length scaling parameter, 𝛼 is the crack geometric function, 𝛱𝑒𝑥𝑡  denotes the external 

potential energy, given as 

 
Π𝑒𝑥𝑡 = ∫𝑏

Ω

⋅ 𝑢𝑑𝑉 + ∫ t̅
Γt

⋅ 𝑢𝑑𝐴 
(3) 

𝜔(𝑑) is the degradation function which describes the degradation of elastically stored energy 𝛹𝑜 and possess the following 

property 𝜔(0) = 1, 𝜔(1) = 0, 𝜔′(1) = 0. The governing equations in weak form can be obtained by the minimization of 

the total potential (2), which yield the following coupled system of equations 

 ∫ (
∂Ψ

∂ϵ
: ∇𝑠𝑦𝑚δu)

Ω

𝑑𝑉 + ∫ 𝑏δudV + ∫ tδ̅udA 
∂Ω𝑡Ω

=  0 (4) 

 ∫ (ω′(d)
∂Ψ

∂ω
δd) dV

B

+
Gf
co
(
1

b
α′δd + 2b∇𝑑 ⋅ ∇δd) dV  ≤  0 (5) 

In accordance with the weighted residual method, the (𝑢, 𝑑) and (𝛿𝑢, 𝛿𝑑) are identified as test and trial functions 

respectively. The problem is now stated as: Find 𝑢 ∈ 𝑈𝑢 and 𝑑 ∈ 𝑈𝑑 such that equations (4) and (5) are satisfied. The test 

and trial spaces, (𝑈𝑢 , 𝑈𝑑) and (𝑉𝑢 , 𝑉𝑑)respectively, are defined as 

 𝑈u ≔ {𝒖|𝒖 = 𝒖̅ ∀𝑥 ∈ ∂Ω𝑢},   𝑉u ≔ {δ𝒖|𝛅𝒖 = 𝟎  ∀𝑥 ∈ ∂Ω𝑢} (6) 

 𝑈𝑑 ≔ {𝑑|𝒅 ∈ [𝟎, 𝟏],  ḋ(x) ≥ 0∀𝑥 ∈ 𝐵},   𝑉𝑑 ≔ {δd|𝛅𝐝 ≥ 𝟎 ∀𝑥 ∈ 𝐵} (7) 
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Equations (5) and (6) are supplemented with the constitutive relations. The relation between Cauchy stress 𝜎 and small 

strain 𝜖 is defined as 𝜎 ≔
𝜕𝛹

𝜕𝜖
= 𝜔

𝜕𝛹𝑜

𝜕𝜖
. For linear elastic material, the stress can be defined as 𝜎 ≔

𝜕𝛹

𝜕𝜖
= 𝜔(𝐷: 𝜖) =

𝜔(𝐷: 𝛻𝑠𝑦𝑚𝛿𝑢). Where D is the material elastic stiffness tensor. The damage driving force, Y, is defined as 

 𝑌 ≔ −
𝜕𝛹

𝜕𝑑
= −𝜔′𝑌́ (8) 

With 𝑌́ =
𝜕𝛹

𝜕𝜔
 is the effective damage driving force. Equations (4) and (5) can now be written as 

 ∫(𝛔: ∇𝑠𝑦𝑚δu)
Ω

𝑑𝑉 + ∫ 𝑏δudV + ∫ t̅δudA 
∂Ω𝑡Ω

=  0 (9) 

 ∫(ω′(d)𝑌 ̅δd)dV
B

+
Gf
co
(
1

b
α′δd + 2b∇𝑑 ⋅ ∇δd) dV ≤  0 (10) 

2.2 Discretization of weak form 

Considering a two dimensional (2D) numerical problem, the domain 𝛺 is divided into 𝑛𝑒 number of finite elements. The 

displacement and damage phase field are approximated as 

 𝑢ℎ(𝑥) = ∑𝑁𝐼(𝑥) 𝑎𝐼
𝑢

𝐼

 ,   𝑑ℎ(𝑥) =∑𝑁𝐼(𝑥) 𝑎𝐼
𝑑

𝐼

 (11) 

In which 𝑁𝐼 is the standard finite element matrix of shape functions for the node 𝐼. 𝑎𝐼
𝑢 and 𝑎𝐼

𝑑 are the nodal unknown 

displacement and damage phase field degrees of freedom (dofs), respectively. Accordingly, the strain field and the gradient 

of damage phase field is given as 

 ϵℎ(𝑥) =∑𝐁𝐼
𝑢(𝑥) 𝑎𝐼

𝑢

𝐼

=  𝐁u𝐚u,   ∇dh(𝑥) =∑𝐁𝐼
𝑑(𝑥) 𝑎𝐼

𝑑

𝐼

=  𝐁d𝐚d (12) 

Incorporating the approximations into the weak form equations (9) and (10), the following two discretized equations are 

obtained 

 𝑅𝑢 = ∫(𝐍𝒖)𝑇𝑏
Ω

dV + ∫ (𝐍𝒖)𝑇t̅
∂Ωt

dA −∫(𝐁𝑢)𝑇𝛔
Ω

𝑑𝑉 = 0 (13) 

 𝑅𝑑 = −∫(𝐍𝑑)𝑇 (ω′Y̅ +
Gf
cob

α′ ) dV
Ω

−∫(𝐁𝑑)𝑇 (
2𝑏

co
Gf∇d) dV

Ω

≤ 𝟎 (14) 

The above equations are solved in a nonlinear setting using Newton-Raphson iterative scheme. 

2.3 Failure criterion 

The equation 𝑌̅ =
∂Ψ

∂ω
 gives similar fracture response both in compression and tension. Therefore, a modified effective 

crack driving force 𝑌̅ is used to simulate fracture in brittle/quasi-brittle materials. In this work it is assumed that fracture 

occurs when the local principal tensile stress exceeds the tensile strength of the material. Consequently, the following form 

of effective crack driving force is used 

 𝑌̅ = 𝑚𝑎𝑥 (
𝑓𝑡
2

2𝐸𝑜
, 𝑚𝑎𝑥 𝑌𝑛̅̅̅) ,   𝑌𝑛̅̅̅ =

1

2𝐸𝑜
(𝜎1)

2 (15) 
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in which 𝑓𝑡 is the tensile strength of the material and 𝐸𝑜 is the modulus of elasticity 

2.4 Degradation function 

Following Wu [12], the following form of degradation function is adopted 

 𝜔(𝑑) =
(1 − 𝑑)𝑝

(1 − 𝑑)𝑝 + 𝑎1𝑑 + 𝑎1𝑎2𝑑
2
 (16) 

The parameters 𝑝 = 2, 𝑎1 = 4𝑙𝑐𝑧/𝜋𝑏, 𝑎2 = −0.5 are used to simulate bilinear traction-separation law. 𝑙𝑐𝑧 is the Irwin’s 

internal length. 

3 Methodology 

The phase field model is implemented in an object-oriented C++ language. An open source JIVE library is used for the 

implementation of the finite element code (JIVE is an open source numerical toolkit for the solution of partial differential 

equations). Table 1 presents the flow of computations in a finite element code with phase field model. 

Table 1-Flow of computations in a finite element code with phase field model 

• Initialization: The displacement 𝐚𝑛
𝑢, damage phase field a𝑛

𝑢  and 𝑌̅𝑛 at time 𝑡𝑛 are known 

• For each loading step n to n+1 

• Set (𝐚𝑛
𝑢(0), 𝑎𝑛

𝑑(0), 𝑌̅𝑛
(0)) equals to (𝐚𝐧

𝐮, 𝑎𝑛
𝑑 , 𝑌̅𝑛) 𝑎𝑛𝑑 𝑗 = 1 

• For each iteration j 

• Calculate Cauchy stress: 𝛔𝑛+1
(𝑗)

(𝐚𝑛+1
𝑢(j)
, 𝑎𝑛+1
𝑑(j)
) 

• Calculate history variable: ℎ𝑖𝑠𝑡𝑛+1
(𝑗)

= 𝑚𝑎𝑥 (ℎ𝑖𝑠𝑡𝑛,
(𝜎1(𝑛+1)
(j)

)
2

2𝐸𝑜
) 

• Calculate 𝑌̅𝑛: 𝑌̅𝑛+1
(𝑗)

= 𝐦𝐚𝐱 (
𝑓𝑡
2

2𝐸𝑜
, ℎ𝑖𝑠𝑡𝑛+1

(𝑗)
) 

• Calculate displacement and damage phase field (𝐚𝑛+1
𝑢(j)
, 𝑎𝑛+1
𝑑(j)
) using equations (13) and (14) 

• Check convergence 

• If converged then update variables: (𝐚𝐧
𝐮, 𝑎𝑛

𝑑 , 𝑌̅𝑛) equals to (𝐚𝑛+1
𝑢(j)
, 𝑎𝑛+1
𝑑(j)
, 𝑌̅𝑛+1
(j)
) 

• Go to next step 

 

 

3.1 Single edge notch beam. 

A single edge notch beam of Song et al. [2] is numerically simulated in this work. Song et al. [2] performed test on a single 

edge notch beam. The geometry of the beam is shown in Figure 2a. The beam contains an initial notch of length 19mm. In 

the experiment crack mouth opening displacement (CMOD) is increased at a linear rate for a stable mode-I crack growth. 

The beam is made of asphalt mixture consisting of a 9.5 mm nominal maximum aggregate size (NMAS) and a performance 

grade (PG) 64-22 asphalt binder. The experiment was performed at low temperature (-10oC) to characterize the fracture 

behaviour at low temperature.  
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a)      b)   

Figure 2: a. Geometry and boundary conditions of single edge notch beam and b. finite element mesh 

Figure 2b shows the finite element mesh of the beam used in the numerical simulation. The beam is modelled with a two-

dimensional, plane strain, 4-noded quadrilateral element. A minimum element size of 1 mm is used in the expected damage 

growth region whereas an element size of 5 mm is used in rest of the model. The notch width is taken as 2mm in the 

numerical model. Moreover, it is assumed that the bulk material essentially behaves elastically at low temperatures and 

therefore temperature effects are ignored. The bulk material is modelled as elastic, homogeneous material with modulus 

of elasticity E=14.2 GPa and Poisson’s ratio 𝜈 = 0.3 [2]. The fracture properties used in the analysis are tensile strength 

𝑓𝑡= 3.56MPa and fracture toughness 𝐺𝑓=0.344 𝐽/𝑚2[2].  In the numerical simulation a downward displacement is applied 

in the middle of the top surface of the beam at a linear rate. The nonlinear finite element equations are solved using a 

Newton-Raphson iterative scheme with a tolerance of 1.0E-3. 

4 Results and discussion 

Figure 3a compares the load versus crack mouth opening displacement (P Vs CMOD) curve obtained from the present 

phase field model with that of experimental results. It is observed that the numerical result is in good agreement with that 

of experimental curve. Figure 3a also compares the P vs CMOD curve obtained by Song et al. [2] using a finite element 

analysis with interface elements. It is observed from the figure that the numerical result obtained by Song et al. [2] shows 

an initial complaint behaviour. This is due to the use of dummy stiffness in the interface formulation to simulate rigid 

interface before initiation of a failure. On the contrary, in the present phase field model the damage initiates once a failure 

criterion is met. Therefore, an initial high stiffness (portion of the curve before the peak load) is also well predicted by the 

present numerical model. Figure 3b shows the deformed shape of the beam representing mode-I fracture through an 

unstructured finite element mesh. 

Figure 4 shows the damage growth in a single edge notch specimen at different levels of crack mouth opening 

displacements. It is observed from the figures that damage initiates at the notch tip before the peak load, figure 4a. After 

the formation of a macro crack (represented with a fully damaged zone 𝜔 = 1) the load drops quickly which represents a 

fast crack growth. Moreover, the damaged zone ahead of the macro crack is large representing a large fracture process 

zone ahead of a crack tip compared to the damaged zone left and right sides of the macro crack. This represents a sharp 

crack as observed in the experiments of Song et al. [9]. As the load increases the damage region grow straight up to the 

top surface of the beam representing mode-I fracture. Additionally, it is observed that as the crack approaches the top 

surface of the beam the crack growth slows down this is also evident from the P Vs CMOD curve (figure 3a) where the 

load drop is more gradual in the later part of the curve. 
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a) b)       

Figure 3: a) Comparison of Load Vs Crack mouth opening displacement curve with the experimental results, b) deformed shape 

 

a) CMOD=0.077mm 

 

b) CMOD=0.19mm 

 

c) CMOD=0.31mm 

 

d) CMOD=0.59mm 

Figure 4: Damage growth at different instants of loading 

5 Conclusion 

In this contribution a phase field diffuse damage model is presented for the simulation of damage in asphalt concrete. A 

crack potential function regularized over a localization band is used to simulate sharp crack. A crack driving force 

integrated with the cohesive constitutive law is used to simulate nonlinear behaviour around the crack. A mode-I fracture 

in an asphalt concrete is numerically simulated and the results are compared with the experimental observations. It is 

observed that the presented model effectively and accurately simulated mode-I fracture in asphalt concrete at low 

temperature. The proposed model does not require the crack path to be known a priori as in the case of interface elements. 

Moreover, the model successfully simulated an initial stiff behaviour unlike interface element analysis which shows an 

initial complaint behaviour due to the use of dummy stiffness in its formulation. The phase field model does not require 

any special algorithm to track crack trajectories and can be easily implemented in a finite element code. At present the 

model is limited to simulate mode-I fracture without considering rate/temperature effects in asphalt concrete. Future work 

will focus on extending the model to the case of mixed mode cracking under various strain rates. 
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