Incident Reporting Tool

Aneeqa Sikander¹, Ayesha Nawaz², Fatima Saleem³, Sundas Iqbal⁴, Dr. Usman Hassan⁵

- Corresponding Author. MS Construction Engineering & Management, National University of Sciences and Technology, Islamabad, Pakistan Email: aneeqa_sikander@yahoo.com
- 2-4 Authors: MS Construction Engineering & Management, National University of Sciences and Technology, Islamabad, Pakistan Email:aichanawaz@gmail.com fatimasaleem860@gmail.com sundasmirza5@gmail.com
- Asst. Professor, MS Construction Engineering & Management, National University of Sciences and Technology, Islamabad, Pakistan. Email: usmanhassan.scee@gmail.com

Abstract

Safety is one of the effective factors on the operation of construction projects and plays a key role in success of a project. Incident reports aid in identification of problems and accidents can be reduced based on corrective actions taken, thus improving the safety. Incident reporting systems are a good source to analyse, track and document all incidents that have taken place on a job site. Unfortunately, most incident reports are generally unstructured, providing little or no guidance. Therefore, most reports contain information only about what happened, as opposed to why an incident happened, making identification of possible hazards and prevention strategies extremely difficult. The study tries to address that the complexity of processes involved in construction can affect safety because of unpreventable workplace injuries. By understanding the situational elements of the prior incidents through incident reporting systems helps in developing preventative safety procedures. This paper aims to achieve the objectives of safe and transparent practice in our industry by developing a framework Safety Reporting Tool (SRT) which will help in apposite reporting as well as management of accidents. This data can be further compiled and can be used for developing an organizational safety plan as a proactive approach to prevent recurrence of unwanted incidents and also continuous improvement of safety operation of projects.

Keywords: Construction Safety, Incident Reporting, Reporting Framework, Reporting Tool.

1. INTRODUCTION:

Construction industry is one of the largest industries in the world. Construction along with its processes makes a complex system with different nodes linked and interacting with each other. Baccarini (Baccarini, 1996) proposes a definition of complexity of construction projects as "consisting of many varied interrelated parts and can be operationalized in terms of differentiation and interdependency". According to the statistics, the percentage of accidents is very high in construction industry than any other industry due to its complex, unpredictable and diversified nature (Ahmed, 2000). Therefore, improvement of safety in construction projects is the most significant concern. In order to minimise this rate, various efforts have been put in place including safe practices (Chan, 2008) . This resulted in devising various schemes which helped a lot in achieving a lower rate during last 20 years (Choudhry, 2008).

Contrary to this, common practice seen in construction industry of Pakistan which is gravely focused on achieving the desired outcomes; cost and time reduction, neglecting the safety perspective. Ineffective reporting mechanism is observed by the contractors who are reluctant to share the statistics mainly due to fact that it weakens their core competency and reputation in the market. (Farooqui, 2007) ; (Ali, 2006). In the view of gap observed, there is a dire need of a reporting mechanism. This paper aims to achieve the objectives of safe and transparent practice in our industry by developing a framework Safety Reporting Tool (SRT) which will help in apposite reporting as well as management of accidents. This data can be further compiled and can be used for developing an organizational safety plan as a proactive approach to prevent recurrence of unwanted incidents and also continuous improvement of safety operation of projects.

2. PROCEDURES AND METHODOLOGY:

2.1 Existed Tools Review and Framework:

An overview and analysis of twenty-five (25) existing tools to support and facilitate the design process and prepared the ground for the main study; some of them as an example, can be viewed in Table 1.

Type of Software	Software Name	Type, Developer	Software Name	
1. Reporting	Techopedia	4. Management, ManageEngine	ServiceDesk Plus	
2. Reporting	Intelex Safety	5. Management, Plan Brother	Incy.io	
3. Reporting	Zendesk	6. Management, Hund	Hund	

Table 1: Review of Existing Softwares

2.2 Safety Reporting Form:

Collecting evidence and accurate data of the incident is an important and tedious task as it requires systematic mechanism. To serve this purpose, a concise form is developed; Figure 1 shows a part of form to be filled by Supervisor, Safety Manager, Witness followed by the input from Investigator making it transparent and indubitable process. 1st Conference on Sustainability in Civil Engineering, August 01, 2019,

To be filled by Supervisor: Step 1	To be filled by Supervisor: Step 2 T	Incident Notification 🚛	
Name Age	· · · · · · · · · · · · · · · · · · ·	Please Select Cause of Incident:	
Title/Role	Abrasion	Unsafe Acts 💎	Unsafe Conditiona 🛛 💎
Date of incident	Adsorption Asbestos exposure Bite	Improper Work Technique	DPoorWorkstationDesign orLayout
	Biological Exposure Biological spill	DImproper PPE, NotUsed or Used Incorrectly	□Fire or Explosion Hazard
	Chemical spill	□Safety Rule Violation	Congested Work Area
Last Day Worked	Chemical exposure	Doperating Without Authorization	□Hazardous Substances
Return to Work	Electrical shock	DFailure to Warn or Secure	Inadequate Ventilation
	Entangled	Doperating at Improper Speeds	□Improper Material Storage
Location		By-Passing Safety Devices	Improper Tool or Equipment
Specific Area of Location	Flying/Falling objects	Guards Not Used	Insufficient Job Knowledge
Tune of Incident	Fall Fainting/Loss of consciousness	Improper Loading or Placement	Slippery Conditions
Type of Incident	Heat illness	□Improper Lifting	DPoor Housekeeping
□lnjury □Death □Near Miss	Ingestion	Servicing or Adjusting Machinery in Motion	Excessive Noise
Dangerous Occurrence	Injection Laceration Radiation exposure	□Horseplay	□Inadequate Guarding of Hazards
Damage/Stolen Property		Drug or Alcohol Use	Defective Tools/Equipment
rioperty	Other:	Unsafe Act(s) of Others	□Insufficient Lighting
Save Changes Next		DUnnecessary Haste	Inadequate Fall Protection
INFAI	Save Changes Next	DOther:	□Other:

Figure 1: Safety Reporting Form

2.3 Investigation Process:

With the data inferred from the Safety Form, a Root Cause Analysis investigation identifies all the root causes associated with a problem to ensure there is no recurrence of the problem. Once recognised the causes will often be the result of physical factors, human factors, organisational factors.

2.3.1 Categorization:

To facilitate the investigation process, following levels of investigation are suggested and compiled in Table 2 ensuring the transparency of the process.

	Level 1: Concise	Level 2: Comprehensive	Level 3: Independent
When should it be used?	Incidents which resulted in no, low or moderate harm	Events which resulted in reportable incidents	Incidents with high level of media interest or mental health, homicides
Who should investigate? Analysis	Conducted by local staff, should add a person with knowledge of RCA 5 Whys, Fish Tail analysis	Conducted by an RCA experienced team not involved in incident. 5 Whys, Fish Tail analysis, High level of detail, Full use of analytical tools	Conducted by people who are independent to the provider, service or organization. High level of detail, Full use of analytical tools
Report	Often released as summary document and includes plans for shared learning locally and/or nationally	Full report with summary including recommendations for sharing locally and nationally	Full report with summary including recommendations for sharing locally and nationally

Table 2: Categories of Investigation

2.3.2 Evidence and Data:

Establishing the following facts from the form filled by Supervisor, Safety Manager and Witnesses in Step 2.2:

What: is the injury? Was the task assigned? Was the work process? Machinery/ plant/ equipment were in use? Safety rules were violated? Safe systems of work, permits to work, isolation procedures were in place? Training had been given?

2.3.3 Root Cause Analysis (RCA):

Based on the facts established above, there are certain steps that should be followed to facilitate identification of the root cause of the incident. The steps outlined below are the minimum requirements for completion of an RCA:

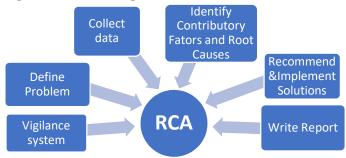


Figure 2: Overview of Root Cause Analysis

2.3.4 Report:

The main purpose of report formulation is to provide a formal record of the investigation process and share learning from the specific incident case to the third party.

2.4 Penalties:

Organization should take defensible disciplinary actions against an employee who violates a safety rule. Management should provide thorough safety training to all employees, and be sure that all safety rules are specific, clear, and follow OSHA or other safety guidelines.

Penalties are determined on a case-by-case basis. It also depends on the offence and type of duty holder the offender is. Some of the factors that are considered in deciding a penalty are severity of the contravention, risk of harm, compliance history of the work site party, including: orders, violation notices etc., also see if there is a commitment to health and safety.

2.5 Contractor Scoring:

This will achieve the secondary objective of the paper; introducing a transparent process of Contractor scoring based on safety performance (Table 3). This will prevent awarding of contracts to the contractors who are practicing unethical but lucrative methods.

Category	Criteria	Score
Personnel	Knowledge and experience of Occupational Health and Safety With exceptional Performance; well above the acceptable standard	
	Occupational Health &Safety representative's presence in critical on-site operations	7
	Safety Plan and provisions of safety in policy	
Preparation	Submission of finalized safety plan earlier than the time required by contract	7
	Effective Hazard Analysis and Risk management	10
	Excellent safety induction/training program.	7
	Provision of safe conditions and proper PPEs	10
	Excellent safety performance in terms of KPIs	10
Implementation	Standard of monthly OH&S reports is excellent and submitted on time	5
Imprementation	Monitoring and inspection	10
	Unbiased Internal audit culture	5
	Reporting of all incidents and accidents and prompt actions taken	7
	No repetition of the same non-conformance	6
	Total	100

Table 3: Contractor safety scoring during project execution

1st Conference on Sustainability in Civil Engineering, August 01, 2019, Capital University of Science and Technology, Islamabad, Pakistan.

2.6 Heat Map

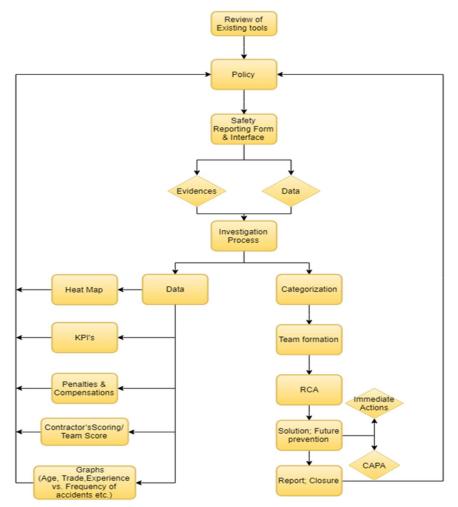
Construction projects always encounter frequent safety issues such as falling from heights, being struck by/against objects, collapse, explosion, fire, cuts, and electrocution (Farooqui R. , 2011) (Zhou & Irizarry, 2016). Heat map is a powerful tool used to visualize the results of risk assessment process in a meaningful and comprehensive way. Heat maps provide a holistic view while making strategic decision. A brief overview of the most common types of heat maps used to visualize incident and accident data is as follows.

2.6.1 Trade Heat Map: The trade heat map indicates the proportion of accidents in relation to different trades included in construction projects e.g. welding, electrification, plumbing etc. (Table 4) The increasing intensity of red colour indicates the high frequency of accidents, pale green colour indicates less number of accidents Table 4: Injuries according to Trades

Table 4. Injunes according						
Trade	Fatalities	LTI	RWC	MTC		
Labour						
Mason						
Steel Fixer						
Plumber						
Welder					LTI	Last Time Insident
Electrician						Lost Time Incident
Carpenter						Restricted Work Case
Heavy Equipment Operator					MTC	Medical Treatment Case

2.6.2 Incident Type Heat Map: This heat map highlights the frequency of occurrence of various types of incidents on construction sites. An illustration of the incident type heat map is given below. The increase in red color indicates higher number of incidents while increase in blue color indicates low number of accidents. Table 5: Incidents on site

Incident Type	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Fall from a higher level												
Fall on same floor level												
Struck; by objects												
Electric Shock												
Struck by falling objects												


2.7 Graphs:

After getting improved data from investigation, following graphs can be generated: Age of Workers, Trade, Experience of Workers Location vs. Frequency of Accidents

3. RESULTS AND DISCUSSION:

A framework SRT has been formulated as it provides a structure for mapping out, defining, and analysing the process, which is the primary objective of this paper. Absence of comprehensive knowledge about reporting of incidents, results in safety issues and ultimately affecting the KPI's of projects.

This study tried to address the importance of a well-structured reporting mechanism and presented a model in the form of a Safety Reporting Tool (SRT) which will prove to be beneficial in guiding and management of incidents if adopted and accepted religiously within the organization. 1st Conference on Sustainability in Civil Engineering, August 01, 2019, Capital University of Science and Technology, Islamabad, Pakistan.

Figure 3: Framework of Incident Reporting Tool

ACKNOWLEGMENT: The careful review and constructive suggestions by the anonymous reviewers are gratefully acknowledged.

REFERENCES:

- Ahmed, S. K. (2000). Site safety management in Hong Kong. *Journal of Management in Engineering*, 16(6), 34-42.
- Ali, T. (. (2006). Influence of national culture on construction safety climate in Pakistan. Doctoral Dissertation, Griffith University, Gold Coast Campus, Australia.

Baccarini, D. (1996). the concept of project complexity a review.

- Chan, A. W. (2008). Work at height fatalities in the repair, maintenance, alteration, and addition works. *Chan, A.P.C., Wong, Journal of construction engineering and management*, 134(7), 527-535.
- Choudhry, R. F. (2008). Challenging and enforcing safety management in developing countries: A strategy. *International Journal of Construction Management*, 87-101.
- Farooqui, R. (2011). Achieving Zero Accidents—A Strategic Framework for Continuous Safety Improvement in the Construction Industry. *Thesis, Florida International University, Miami, FL, USA*.
- Farooqui, R. A. (2007). Developing safety culture in Pakistani construction industry An assessment of perceptions and practices among construction contractors . In proceedings of 4th International Conference on Construction.
- Zhou, Z., & Irizarry, J. (2016). Integrated framework of modified accident energy release model and network theory to explore the full complexity of Hangzhou subway construction collapse . J. Manag. Eng., 32, 05016013.